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Introduction

Background

• Research Artifacts

— digital objects created or used in the course of research work

▪ software, toolkits, programs, observation/experimental data 

— increasingly cited in scholarly papers
and gathering attention as one of the research results 

• Repositories for research artifacts

— facilitate to share and utilize research artifacts

— it is required to register metadata of 
research artifacts 

— metadata in the repositories make 
research artifacts more accessible and findable

Automatic generation of metadata
makes developing and expanding repositories more efficient

title Treebank-3

contributor Mitchell P. Marcus et al.

publisher Linguistic Data Consortium

date 1999

type(DCMI) Text

description This release contains the following Treeb-

ank-2 … will include these missing files.

identifier DOI: 10.35111/gq1x-j780,

https://catalog.ldc.upenn.edu/LDC99T42

An example metadata
(from Open Language Archive Community) 

https://catalog.ldc.upenn.edu/LDC99T42
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Introduction

Related Work

• Automatic generating metadata

— Kozawa et al. [1] have proposed a method for
extracting usage information from scholarly papers
▪ using resource names in SHACHI [2] as clue

▪ target resources were limited to ones in repositories

— Our targets include ones not stored in existing repositories

• Identification of citations for research artifacts in scholarly papers

— Some method identifies dataset [3-6] or
software [3,7-9] names in the body text

▪ providing the corresponding URL▪ listed in the reference section [10]

title WordNet

creator George A. Miller,

Princeton University, etc.

publisher The Global WordNet Association

MIT Press

type Text

identifier http://wordnet.princeton.edu/

usage NLP, word sense disambiguation,

query expansion, cluster its senses 

− On the other hand, there are other ways for citing them
*quoted from [9]

*An example from [1,2]

*quoted from [18]
*quoted from [19]

http://wordnet.princeton.edu/


6

Introduction

Contribution

• identification of URLs citing research artifact in scholarly papers

• generating information about the type of the research artifacts 

1 We proposed the methods realizing the following tasks automatically 

2 We evaluated the classification performances of the methods

Metadata

➢ not research artifact

➢ used lexicon (research artifact)

title WordNet

creator George A. Miller,

Princeton University, etc.

publisher The Global WordNet Association

MIT Press

type Text

identifier http://wordnet.princeton.edu/

usage NLP, word sense disambiguation,

query expansion, cluster its senses 

*An example from [1,2]

*quoted from [20]

*quoted from [21]

http://wordnet.princeton.edu/
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Methodology

Task Definition

• URL classification
— Our goals

▪ identify URLs citing research artifacts

▪ detect the type of research artifacts.

— Each URL in scholarly papers is classified
based on the type of objects
which the URL refers to

tool

data

other

the classesextracted URLs

ftp://x3.y3.z3/example3

https://x1.y1.z1/example1

http://x2.y2.z2/example2

・
・
・

scholarly papers

........

........

......

........

........

......

........

........

.....

........

........

......

• The definition of each class

1. tool: programs, software, toolkit etc.

http://www.csie.ntu.edu.tw/~cjlin/libsvm (software)

https://www.tensorflow.org/ (framework)

2. data: observation/experimental data,
data source, etc.

http://qwone.com/~jason/20Newsgroups/ (corpus)

http://babelnet.org (dictionary)

3. other: not research artifacts
(e.g., publications, services)

http://www.apple.com/ios/siri (product)

http://is.muni.cz/publication/884893/en (publication)

research artifacts

http://www.csie.ntu.edu.tw/~cjlin/libsvm
https://www.tensorflow.org/
http://qwone.com/~jason/20Newsgroups/
http://babelnet.org/
http://www.apple.com/ios/siri
http://is.muni.cz/publication/884893/en
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Methodology

• intuitiveness: reading citation contexts, 
we can know what resources a URL refers to 
➢ the system can classify an URL properly 

if it can captures all citation contexts of the URL 

URLs in footnotes

URLs in bibliographic information

• the Citation Context of a URL: the corresponding sentence in the body text
(referring to footnote or reference where the URL are provided)  

We obtain distributed representations of URLs
and use them for input features in URL classification

*quoted from [22]

*quoted from [23]

The ClueWeb09 \footnote{http://lemurproject.org/clueweb09/} dataset 

is a collection of 1 billion webpages (5TB compressed in raw HTML) 

in 10 languages by Carnegie Mellon University in 2009

document 

dataset

*quoted from [24]
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Methodology

Distributed Representations of URLs

• two approaches to obtain distributed representations of URLs with different semantic units

regarding each URL as a word [11]

regarding each component of URLs as a word (our original approach)

The Stanford POS Tagger ( http://nlp.stanford.edu/software/tagger.shtml )

is used to distinguish noun and adjective words from each other.

a tag (e.g., [URL930])

The Stanford POS Tagger ( http:// nlp . stanford . edu / software / tagger . shtml )

is used to distinguish noun and adjective words from each other.

http://trec.nist.gov/data/tweets/e.g.,

dataset about tweets?

➢ some components are considered to contain any meaning

➢ we define components as domain, directory, filename, and extension

❑ we call each component URL element

..[URL930]..

.…………

…………

…….

...……….

...............

[URL930].…

……..

....[URL930]

…………

…………

……

...……….

....[URL930]

…………

…….

distributed
representation

➢ This approach converts each URL to the tag

and obtains distributed representations of the tags 

➢ This approach converts each component to the tag, obtains distributed representations of the tags,

and synthesizes them for obtaining overall representations of URLs 

a tag
(e.g., [COMP930])

*quoted from [25]

*quoted from [25]

http://nlp.stanford.edu/software/tagger.shtml
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Methodology

Methods for URL Classification

Step 3

classify URLs using the distributed representations 

as input features

Step 2

obtain distributed representations of tags (URLs)

Step 1

convert each URL to the tag

Step 4

classify URLs using

the features created in Step3

Step 3

create a feature of each URL by synthesizing

distributed representations of the URL elements

Step 2

obtain distributed representations

of tags (URL elements)

Step 1

convert each URL element to the tag

The Stanford POS Tagger [COMP7070]  [COMP9479]  [COMP3891]  

[COMP9344] [COMP9680]  [COMP9182] is used to distinguish 

noun and adjective words from each other.

1 if each URL is regarded as a word

if each URL element is regarded as a word (proposed approach)2

The Stanford POS Tagger http://nlp.stanford.edu/software/tagger.shtml

is used to distinguish noun and adjective words from each other.

The Stanford POS Tagger [URL2495] is used to distinguish

noun and adjective words from each other.

http:// [𝑒1] [𝑒2] … [𝑒𝑛−1] [𝑒𝑛]

𝑓(𝑣𝑒1 , … , 𝑣𝑒𝑛)

an input feature

*quoted from [25]

*original sentence in [25]

http://nlp.stanford.edu/software/tagger.shtml
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Methodology

Some Compositional Functions

Summation (in our previous study [12])

➢ add vectors element-wise

➢ overly affected by frequent URL element

in scholarly papers

1

➢ weaken the influence of frequent URL elements

➢ entropy is computed according to 

the frequency in papers

Summation weighted by 
the entropy of each URL element

2

Summation except top-level domains

➢ top-level domains may be not useful for the classification

➢ exclude top-level domains from the computation

3 taku910 github io mecab

Embedding Layer + ReLU

GRU GRU GRU GRU

GRU GRU GRU GRU

Linear + Softmax

tool / data / other

concat + ReLU

http://taku910.github.io/mecab/

➢ to get better weights for synthesizing

➢ incorporate order information

GRU [13]4

http://taku910.github.io/mecab/
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Experiment

Experimental Setup
to evaluate classification performances of the methods

based on collected papers of the international 
conferences in the Natural Language Processing [14]

Purpose:

Dataset:

Proceedings

collected

PDF files

converted

xhtml files

PDFNLT
[15,16]

2 Annotated URLs for evaluating 
classification performances

➢ we labeled 500 URLs appearing 
frequently in the collected papers

➢ 100 URLs are development set

0% 20% 40% 60% 80% 100%

tool data other

1 Text dataset for obtaining 
distributed representations

➢ URLs were inserted into body texts

Setup

• Obtaining distributed representations: word2vec [17]

• For each method, the following parameter are selected 
based on the performance for the development set:
— parameters of word2vec (and GRU)

— classification model

— whether to standardize input features

Evaluation

• 10 fold cross-validation for 400 annotated URLs

• metric
— macro-averaged F1-score

— F1-score for each label

*quoted from [22,23]



Experimental Result (1/2)

13

Experiment

Method
F1-score

macro-ave tool data other

baseline

(regarding each URL as a word)
0.779 0.830 0.801 0.663

summation 0.808 0.809 0.725 0.857

summation weighted by entropy 0.805 0.810 0.732 0.842

summation except top-level domains 0.816 0.821 0.745 0.864

GRU 0.820 0.835 0.746 0.865

our
approach

• Obtaining distributed representations is effective for this task as a whole 

• baseline vs our approach
— our approach got better results on macro-averaged F1 consistently
— our approach was not good at discriminating the “data”
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Experiment

Method
F1-score

macro-ave tool data other

baseline

(regarding each URL as a word)
0.779 0.830 0.801 0.663

summation 0.808 0.809 0.725 0.857

summation weighted by entropy 0.805 0.810 0.732 0.842

summation except top-level domains 0.816 0.821 0.745 0.864

GRU 0.820 0.835 0.746 0.865

our
approach

• Comparing Compositional functions
— Compared to the summation, weighting by entropy got worse results on some metrics

— Compared to the summation, excluding top-level domains got better results on all metrics

— GRU got the best results
there are useful URL elements in frequent URL elements

and we should exclude top-level domains only
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Conclusion

• Future Work
— reveal why our approach is not good at discriminating the “data”

— more complex functions (e.g., using Transfer Encoder)

— multi-label classification
▪ there are URLs distributing tools and datasets simultaneously 

• Conclusion

— We formulate the URL classification task to realize the following things:

▪ identification of URLs citing research artifacts in scholarly papers

▪ generating information about the type of the research artifacts

— Using distributed representations of URLs was effective,
and using those of URL elements got better results

— When synthesizing distributed representations of URL elements,
excluding top-level domains is effective
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